Researchers build a particle accelerator that fits on a chip

Just as desktop PCs acquired some of the functions performed by room-sized mainframes, a Stanford team has prototyped a silicon chip that packs some of the punch delivered by ginormous particle accelerators

For the first time, scientists at Stanford and SLAC have created a silicon chip that can accelerate electrons - albeit at a fraction of the velocity of that massive instrument - using an infrared laser to deliver, in less than a hair's width, the sort of energy boost that takes microwaves many feet.

Set up on a hillside above Stanford University, the SLAC National Accelerator Laboratory operates a scientific instrument nearly 2 miles long. In this giant accelerator, a stream of electrons flows through a vacuum pipe, as bursts of microwave radiation nudge the particles ever-faster forward until their velocity approaches the speed of light, creating a powerful beam useful to probe the atomic and molecular structures of inorganic and biological materials.

accelerator-on-a-chip
This image, magnified 25,000 times, shows a section of a prototype accelerator-on-a-chip. The segment shown here are one-tenth the width of a human. The oddly shaped gray structures are nanometer-sized features carved in to silicon that focus bursts of infrared laser light, shown in yellow and purple, on a flow of electrons through the center channel. As the electrons travel from left to right, the light focused in the channel is carefully synchronized with passing particles to move them forward at greater and greater velocities. By packing 1,000 of these acceleration channels onto an inch-sized chip, Stanford researchers hope to create an electron beam that moves at 94 percent of the speed of light, and to use this energized particle flow for research and medical applications Image courtesy of Neil Sapra

In their paper published in the Jan. 3 issue of Science, a team led by electrical engineer Jelena Vuckovic explained how they carved a nanoscale channel out of silicon, sealed it in a vacuum and sent electrons through this cavity while pulses of infrared light - to which silicon is as transparent as glass is to visible light - were transmitted by the channel walls to speed the electrons along.

The accelerator-on-a-chip demonstrated in Science is just a prototype, but Vuckovic said its design and fabrication techniques can be scaled up to deliver particle beams accelerated enough to perform cutting-edge experiments in chemistry, materials science and biological discovery that don't require the power of a massive accelerator.

Accelerators are like powerful telescopes

"The largest accelerators are like powerful telescopes. There are only a few in the world and scientists must come to places like SLAC to use them," Vuckovic said. "We want to miniaturize accelerator technology in a way that makes it a more accessible research tool."

Team members liken their approach to the way that computing evolved from the mainframe to the smaller but still useful PC. Accelerator-on-a-chip technology could also lead to new cancer radiation therapies, said physicist Robert Byer, a co-author of the Science paper. Again, it's a matter of size. Today, medical X-ray machines fill a room and deliver a beam of radiation that's tough to focus on tumors, requiring patients to wear lead shields to minimize collateral damage.

Medical application to beam radiation directly to a tumor

"In this paper we begin to show how it might be possible to deliver electron beam radiation directly to a tumor, leaving healthy tissue unaffected," said Byer, who leads the Accelerator on a Chip International Program, or ACHIP, a broader effort of which this current research is a part. It can derive medical benefits from the miniaturization of accelerator technology in addition to the research applications, explained researchers.

what-is-a-tumor
READ MORE