The Wuhan coronavirus or novel 2019 –nCoV, has spread like a wildfire across China and reached the shores of 22 countries as of now. In a bid to stem the spread of the disease, countries have resorted to various preventive and arresting measures. Many laboratories are in the process of formulating a vaccine. However, combating this new pathogen is proving to be a global challenge.
A new study by researchers from the University of Minnesota suggests that understanding the Severe acute respiratory syndrome virus (SARS) or SARS-CoV, which caused global panic in 2002-2003 may help combat the new coronavirus.
After a structural study that lasted for ten years, the researchers have been able to demonstrate the manner of interaction between the SARS-CoV and animals, and human hosts that lead to infection in them. The scientists suggest that the mechanism of infection of the Wuhan coronavirus exhibits similarities to the SARS-CoV, which also is a coronavirus.
Coronavirus uses a heart regulating enzyme to infect
Using the data and information acquired from multiple strains of SARS-CoV from diverse hosts from different years, and studying the angiotensin-converting enzyme-2 (ACE2) receptors from various species of host animals, the scientists modelled predictions for the Wuhan coronavirus. Normally, the enzyme is associated with the regulation of cardiac functions. However, both these viruses have been found to gain entry into healthy cells by using ACE2.
"Our structural analyses confidently predict that the Wuhan coronavirus uses ACE2 as its host receptor," the researchers wrote in the study. They state that various other structural details of the new coronavirus are consistent with the ability of the SARS-CoV to recognise the ACE2 receptors to infect the cells, playing a determining role in transmission from hosts to human beings, and human to human.
Mutation can enhance the ability of the coronavirus
The researchers also stressed that a single mutation has the ability to increase the potency with which the virus can infect humans. "Alarmingly, our data predict that a single mutation [at a specific spot in the genome] could significantly enhance [the Wuhan coronavirus's] ability to bind with human ACE2," they stated in the study.
It is because of this danger that the evolution of the Wuhan virus among patients must be monitored closely to spot novel mutations in its genomes, the scientists add. This continuous examination may help predict the possibility of an outbreak that could be far more serious than the ones being witnessed the authors stress.
Could serve as a model to combat Wuhan coronavirus
"One of the long -term goals of our previous structural studies on SARS -CoV was to build an atomic -level iterative framework of virus-receptor interactions that facilitate epidemic surveillance, predict species-specific receptor usage and identify potential animal hosts and likely animal models of human diseases," highlighted the authors.
They conclude that this study provides translational and public health research communities with a reiterative framework that may help provide predictive insights enabling the better understanding and counter of the novel 2019 -nCoV.